
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Centre for Intelligent Systems and their Applications

Logic-based Program Synthesis via Program Extraction

by

Ewen Denney

Informatics Research Report EDI-INF-RR-0142

Division of Informatics March 2002
http://www.informatics.ed.ac.uk/



Logic-based Program Synthesis via Program Extraction

Ewen Denney

Informatics Research Report EDI-INF-RR-0142

DIVISION of INFORMATICS
Centre for Intelligent Systems and their Applications

March 2002

appears in AAAI 2002 Spring Symposium, Stanford, USA

Abstract :
This paper outlines the author’s experiences using the methodology of program extraction within a proof assistant-

based on constructive type theory. We discuss the feasibility of the methodology and tool support, and suggest some
directions for future research.

Keywords : program synthesis, Java Card, type theory, abstraction

Copyright c 2002 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.



Logic-based Program Synthesis
via Program Extraction

POSITION PAPER

Ewen Denney
Division of Informatics
University of Edinburgh

Scotland
ewd@dai.ed.ac.uk

Abstract

This paper outlines the author’s experiences using the
methodology of program extraction within a proof assistant
based on constructive type theory. We discuss the feasibil-
ity of the methodology and tool support, and suggest some
directions for future research.

Introduction
The author’s interest in this area originated from an indus-
trial collaboration between his research group, who were in-
terested in formalising aspects of the Java Card virtual ma-
chine, and a company interested in achieving formal certifi-
cation for their Java Card products.

Our group had already formalised a Java Card framework
at the bytecode level, and a specification of a particular opti-
misation of interest, which had been used to verify its prop-
erties. The specification in question was, roughly speaking,
of the form

∀x : Class file . ∃y : CAP file . correct(x, y)

This is the traditional form of a synthesis problem so we de-
cided to try and prove the theorem constructively (in Coq)
and hence develop an actual optimisation algorithm by ex-
traction.

The proof (of course) turned out to be far harder than we
had anticipated. A program was finally obtained (Denney
2001), but even though we did expect the effort involved to
be prohibitive, we were surprised that there appeared to be
little in the literature by way of case studies, techniques, or
tool support, which compounded the difficulty.

Constructive proof assistants, such as Coq, are frequently
‘sold’ as being a basis for program extraction, yet the em-
barrassing truth is that they are rarely used for this: why?

We address this question by looking at a number of is-
sues concerned with the extraction methodology, and sug-
gest several directions in which it could be improved.

Discussion
We discuss four aspects of the extraction methodology: its
logical basis, tactical support, the nature of the code pro-
duced, and its part in the software process.

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The Logical Basis of Synthesis
Some people are put off the whole synthesis paradigm be-
cause of its associations with constructive logic. There are
a number of misconceptions here. Firstly, people tend to be
more comfortable with classical logic, and see constructive
logic, or constructivism, as a philosophical movement (more
correctly, intuitionism), with little to do with computing sci-
ence.

In actual fact, most synthesis-oriented reasoning is clas-
sical. Typically, verification can be done perfectly well in
classical logic. Indeed, a large part of synthesis consists of
verifying properties of components, so there is no need for
an entirely constructive framework. (For example, so long as
a witness t to ∃x.P is supplied, P [t/x] can be proven classi-
cally). This then raises the question of how best to combine
classical and constructive reasoning techniques.

Another problem is that existing corpora of proofs are typ-
ically in classical logics. Also, many decision procedures
and familiar proof techniques such as resolution only work
in classical logic (though resolution is constructive for Horn
clauses). Some other questions to address are:
• what techniques are best for mining classical corpora?

e.g. proof transformations?

• which existing tactics are constructive?

• when is mixing classical and constructive reasoning safe?
Some of these issues have been discussed before (e.g. see
(Caldwell & Underwood 1996)), but although it is well-
known that there are various techniques for getting compu-
tational content from classical proofs, these have not been
seriously exploited.

An exception is the recent work of Schwichtenberg
(Schwichtenberg 1999), who has developed refined tech-
niques for extracting content from a subset of classical
proofs, and implemented this in the Minlog system.

Proof Techniques
Typically, the tactics which are needed for synthesis have a
slightly different emphasis than those used in ‘standard’ the-
orem proving. The main problem is what might be described
as “constructing objects from other objects”.

There are two problems here. First, how do we decide
which objects are relevant (given a library of programs and
lemmas) and, then, how do we join them together?



For example, suppose we want to construct a program
which satisfies the specification φ → χ (meaning, if the in-
put satisfies φ then the output satisfies χ) given programs
which satisfy φ→ ψ and ψ′

→ χ, where ψ and ψ′ are ‘sim-
ilar’, in some sense. How do we characterise and recognise
this similarity, and how do we combine the programs?

A common situation is that specifications and proofs are
often complicated by well-formedness constraints (which
are often decidable), but the proof is best explained at a cer-
tain level of abstraction, (e.g. once we abstract from well-
formedness constraints, some proofs can be viewed as equal-
ity reasoning; others are simple propositional reasoning.)

In fact, these two themes — abstraction and relevance
— are related. Gazing (Barker-Plummer 1992) is an
abstraction-based technique which aims to select relevant
lemmas for use in proofs. To apply this technique here,
we would replace “similar” above with “have a common ab-
straction”.

However, this technique has never been applied in a con-
structive setting and, in particular, to program synthesis. The
extension of (Barker-Plummer 1992) to a higher-order con-
structive setting is not obvious, but looks like a promising
way of applying component-based design in a constructive
setting.

As an example of the application of gazing in a construc-
tive context, consider the problem of using a component
which is the curried equivalent of what would otherwise
match a goal. An appropriate abstraction, however, will not
distinguish between a term and its currying, so the proof can
proceed. Later, the proof can be patched to account for such
structural rearrangements.

Architecture management

Another problem with the extraction paradigm is the confus-
ing nature of the code that results. The problem, basically,
is that extracted programs tend not to follow good princi-
ples of software design such as modularity, data abstraction,
and sufficient documentation. Clearly, we can not expect a
badly structured proof to give rise to a well-structured pro-
gram. However, we should not expect things to get worse!

It could be argued that we should think of the proof as
the ‘source’ and extraction as a form of compilation, and we
should not worry about the form of the code. Nevertheless,
in practice, we would prefer good code to bad, and the situ-
ation could be improved in several ways. In the case of Coq,
the extraction mechanism should be able to at least reflect
the logical structure of the proof in the physical layout of
the functions. More generally, what we would like is that
extraction does not just produce a program, but a program
with metadata derived from the proof. We could also anno-
tate the proof to supply information which cannot be derived
automatically.

A related problem is that of displaying the proof compre-
hensibly. Coq (v6) has a natural language rendering mecha-
nism, but this does just not work with constructive proofs. It
could be extended, also incorporating tactics to give a hier-
archical presentation of the proof (rather than the low-level
steps which the tactics give rise to).

We can envisage two possible approaches to these prob-
lems. One is to represent the proof in XML and use its
features to annotate the proof. Another is to stick with the
proofs-as-programs paradigm but extend it to account for hi-
erarchical proofs, on the logical side, and analogously hier-
archical lambda terms, on the type-theory side.

Software Process
Research on program synthesis has often been tempered by
an isolationist attitude that synthesis is separate from the rest
of the software process. A consequence of viewing it as
being purely in the logical world is that little thought has
been given to methodological concerns, such as the nature
of the resulting code.

This has led to synthesis and extraction, in particular, as
being viewed as some kind of ‘Magic Button’. This leads to
disillusionment. In practice, of course, synthesis is just one
part of the software process, and depends upon other stages
of development. As a methodology, extraction ranges from
direct programming in a high-level language (effectively a
form of automated data refinement), to full synthesis.

One of the surprises of (Denney 2001), was the need for
testing the extracted programs — when the specification is
not tight enough, or to validate the specifications generally;
also, feedback is needed to see if the underlying data format
is appropriate.

Conclusion
It has been claimed that program extraction is an infeasible
approach to formal software development. At the very least,
I would say that reports of its demise are premature. There
are so many, apparently untackled, problems that more re-
search is needed to determine how feasible extraction could
be.

The author is involved in a number of projects which ad-
dress some of the issues raised here.

Acknowledgements
This work has been funded by EPSRC grant GR/M45030.

References
Barker-Plummer, D. 1992. Gazing: An approach to the
problem of definition and lemma use. J. Automated Rea-
soning 8:311–344.
Caldwell, J., and Underwood, J. 1996. Classical tools for
constructive proof search. In Galmiche, D., ed., Proceed-
ings of the CADE-13 Workshop on Proof search in type-
theoretic languages. Rutgers N.J.
Denney, E. 2001. The Synthesis of a Java Card Tokeni-
sation Algorithm. In Proceedings of the 16th IEEE Inter-
national Conference on Automated Software Engineering,
San Diego, USA.
Schwichtenberg, H. 1999. Refined Program Extraction
from Classical Proofs: Some Case Studies. In Broy, M.,
ed., Lecture Notes of Marktoberdorf International Summer
School.


